5 resultados para Estrogen

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Trastuzumab (Herceptin(R)) improves disease-free survival (DFS) and overall survival for patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. We aimed to assess the magnitude of its clinical benefit for subpopulations defined by nodal and steroid hormone receptor status using data from the Herceptin Adjuvant (HERA) study. PATIENTS AND METHODS: HERA is an international multicenter randomized trial comparing 1 or 2 years of trastuzumab treatment with observation after standard chemotherapy in women with HER2-positive breast cancer. In total, 1703 women randomized to 1-year trastuzumab and 1698 women randomized to observation were included in these analyses. Median follow-up was 23.5 months. The primary endpoint was DFS. RESULTS: The overall hazard ratio (HR) for trastuzumab versus observation was 0.64 [95% confidence interval (CI) 0.54-0.76; P < 0.0001], ranging from 0.46 to 0.82 for subgroups. Estimated improvement in 3-year DFS in subgroups ranged from +11.3% to +0.6%. Patients with the best prognosis (those with node-negative disease and tumors 1.1-2.0 cm) had benefit similar to the overall cohort (HR 0.53, 95% CI 0.26-1.07; 3-year DFS improvement +4.6%, 95% CI -4.0% to 13.2%). CONCLUSIONS: Adjuvant trastuzumab therapy reduces the risk of relapse similarly across subgroups defined by nodal status and steroid hormone receptor status, even those at relatively low risk for relapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two clearly opposing views exist on the function of alpha-fetoprotein (AFP), a fetal plasma protein that binds estrogens with high affinity, in the sexual differentiation of the rodent brain. AFP has been proposed to either prevent the entry of estrogens or to actively transport estrogens into the developing female brain. The availability of Afp mutant mice (Afp-/-) now finally allows us to resolve this longstanding controversy concerning the role of AFP in brain sexual differentiation, and thus to determine whether prenatal estrogens contribute to the development of the female brain. Here we show that the brain and behavior of female Afp-/- mice were masculinized and defeminized. However, when estrogen production was blocked by embryonic treatment with the aromatase inhibitor 1,4,6-androstatriene-3,17- dione, the feminine phenotype of these mice was rescued. These results clearly demonstrate that prenatal estrogens masculinize and defeminize the brain and that AFP protects the female brain from these effects of estrogens. © 2006 Nature Publishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most potent steroid in human prostatic carcinoma LNCaP cells, i.e. dihydrotestosterone (DHT), has a biphasic stimulatory effect on cell proliferation. At the maximal stimulatory concentration of 0.1 nM DHT, analysis of cell kinetic parameters shows a decrease of the G0-G1 fraction with a corresponding increase of the S and G2 + M fractions. In contrast, concentrations of 1 nM DHT or higher induce a return of cell proliferation to control levels, reflected by an increase in the G0-G1 fraction at the expense of the S and especially the G2 + M fractions. Continuous labeling for 144 h with the nucleotide analogue 5'-bromodeoxyuridine shows that the percentage of cycling LNCaP cells rises more than 90% after treatment with stimulatory concentrations of DHT, whereas in control cells as well as in cells treated with high concentrations of the androgen, this value remains below 50%. Although LNCaP cells do not contain detectable estrogen receptors, the new pure steroidal antiestrogen EM-139 not only reversed the stimulation of cell proliferation and cell kinetics induced by stimulatory doses of DHT but also inhibited basal cell proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have recently demonstrated that physiological levels of androgens exert direct and potent inhibitory effects on the growth of human breast cancer ZR-75-1 cells in vivo in nude mice as well as in vitro under both basal and estrogen-stimulated conditions. The inhibitory effect of androgens has also been confirmed on the growth of dimethylbenz(a)anthracene (DMBA)-induced mammary carcinoma in the rat. Such observations are in close agreement with the clinical data showing that androgens and the androgenic compound medroxyprogesterone acetate (MPA) have beneficial effects in breast cancer in women comparable to other endocrine therapies, including tamoxifen. Although the inhibitory action of androgens on cell proliferation in estrogen-induced ZR-75-1 cells results, in part, from their suppressive effect on expression of the estrogen receptor, the androgens also exert a direct inhibitory effect independent of estrogens. Androgens cause a global slowing effect on the duration of the cell cycle. These observations support clinical data showing that androgenic compounds induce an objective remission after failure of antiestrogen therapy as well as those indicating that the antiproliferative action of androgens is additive to that of antiestrogens. We have also recently demonstrated in ZR-75-1 human breast cancer cells the antagonism between androgens and estrogens on the expression of GCDFP-15 and GCDFP-24 which are two major proteins secreted in human gross cystic disease fluid. The effects of androgens and estrogens as well as those of progestins and glucocorticoids on GCDFP-15 and GCDFP-24 mRNA levels and secretion are opposite to those induced by the same steroids on cell growth in ZR-75-1 cells.